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The drawback of the spherical, α=√k, and rotatable, α=∜f, f=2^k axial distances of the central 

composite designs (CCD) is the extreme values of the axial distance as the number of 

experimental factors, k, increases, resulting in impractical axial distances beyond the bounds 

of the design region. The practical central composite design compensates for this drawback by 

providing more stable and less extreme axial distance irrespective of the size of k. This study 

focuses on the evaluation of partially replicated cube and star portions of the variations of the 

CCD with practical axial distance, α=∜k. By replicating the cube and star portions. The 

variation of the partially replicated central composite designs was evaluated using the 

following single-value optimality criteria: A-, D- and E-efficiencies and V-criterion. Fraction 

of design space graphs (FDSG) and variance dispersion graphs (VDG) were used to assess the 

scaled and unscaled prediction variances across the design regions. The replication of the star 

points yielded small and better distribution of the prediction variance across the design space 

and better results for the A-, G- and V-criterion.. On the contrary, The D-efficiency was not 

improved by the replication of the cube portion. Lack-of-fit, residual and pure error degrees of 

freedom of partially replicated CCD were ascertained. 
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1.0 Introduction 

In response surface methodology, most popular and commonly used response 

surface design is the CCD which was developed by Box and Wilson (1951). 

This design is characterized by three distinct components: the centre, the star 

(axial component) and the cube (factorial component). The coordinates of the 

cube portion is of the form, (±1, ±1, . . . , ±1) for the k independent variables, 
(𝑥1, . . . , 𝑥𝑘). This iimplies that the cube has the highest value set at +1 and the 

lowest value set at -1 which defines the extreme regions of the unit cube. The 

star has coordinates of the form, , (0, ±𝛼,  0,  . . . ,  0), . . . , (0,  0, . . . ,  ±𝛼) , 

such that 𝛼 defines the position of the star points in the design region. The 

highest value of the star points is at +𝛼 and lowest value at −𝛼. The centre 

component has coordinates of the form, (0,  0,  . . . ,  0).   
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 Placing the star points on the axis of the design space defined by the 

CCD determines the distance of the star points from the centre of the design 

space and is important in the performance of the design with respect to 

prediction of responses. The axial distance, 𝛼, is the distance of the star points 

from the centre of the design space along the axes of the CCD. There are very 

important axial distances which exist in the literature for the CCD for different 

experimental conditions. One of such axial distances is the spherical alpha 

which puts the design points on a sphere of distance, 𝛼 = √𝑘, from the centre 

of the design region. Another axial distance is the rotatable alpha, with distance, 

𝛼 = √𝑓4
, from the centre of the design space, where 𝑓 = 2𝑘  factorial runs, 

which gives a CCD that has equal precision at equal distance from the centre of 

the design region. Then, the cuboidal alpha at distance,  𝛼 = 1, puts the star 

points at the centre of the face of the unit cube, ensuring that the star points are 

distance 𝛼 = 1 𝑓𝑟𝑜𝑚 the centre of the cuboidal region. 

 The problem of the spherical and rotatable axial distances, as pointed 

out by Li et al (2009), is that as the number of factors increases, the values of 

the axial distances could be impracticable in response surface exploration. 

Consider, for example, an experiment involving k = 10, then, √10 = 3.1623  

and √2104
= 5.6569 , respectively, for the spherical and rotatable axial 

distances, which are not feasible values (see Table 1 for detailed results of the 

axial distances for k = 6 to 10). Therefore, Anderson and Whitcomb (2005) 

provided the practical axial distance, 𝛼 = √𝑘
4

, which is a compromise between 

the spherical and cuboidal axial distances. The practical alpha, which is 

moderate and less extreme, also offers reasonable variance inflation factor 

(VIF) as the number of factors, k increased. Ukaegbu (2018) compared the 

prediction variances of the practical axial distance of the CCD with the 

prediction variances of the spherical, face-centred, rotatable and orthogonal 

axial distances for 3 to 6 design factors using variance dispersion graphs (VDG) 

and the fraction of design space (FDS) graphs.  

 In the present study, we employ the advantage that the practical alpha 

offers in evaluating the CCD with partial replications of the factorial and star 

portions. To enhance the evaluation and comparisons of the replicated designs 

variations, we used three popular single-value efficiency criteria, the A-, D- and 

G-efficiencies, and the V-criterion. Graphical methods employed in assessing 

and comparing the prediction variance properties of the partially replicated 

design variations are the variance dispersion graphs (VDG) and the fraction of 

design space (FDS) graphs. The number of factors under consideration is k = 3 

to 6 factors. 

2.0 Literature Review 

Anderson-Cook et al. (2009) listed some of the properties of a good 

design for fitting second-order response surfaces, some of which include 
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providing sufficient information to allow the test of model lack-of-fit; be robust 

to outliers in the data; be robust to errors in the control of design levels; provide 

a good distribution of the prediction variance throughout the design region; etc. 

(see Myers and Montgomery, 2002 and Anderson-Cook, 2005 for further 

references). The CCD with spherical and rotatable axial distances have 

limitations in attaining some of the properties as the number of factors increases 

due to resulting impractical axial distances.  

 As already stated, the practical alpha, 𝛼 = √𝑘
4

, was presented by 

Anderson and Whitcomb (2005) as a compromise between the spherical and 

cuboidal axial distances. According to Anderson and Whitcomb (2005), this 

practical axial distance provides (i) acceptable variance inflation factor (VIF), 

and (ii) design points which are less extreme with an increase in the number of 

design factors. Generally, the VIF is a measure of how much the variances of 

estimated model parameters are inflated when compared to the predictor 

variables not being linearly related. This measure is very useful in detecting the 

presence of multicollinearity in regression models. Li et al. (2009) submitted 

that the practical axial distance results in near-rotatable central composite 

designs and offers stable scaled prediction variance across the design region. In 

the study by Li et al. (2009), the CCD with practical axial distance was shown 

to perform better than the other competing designs in the cuboidal region 

considering the scaled and unscaled prediction variances; the design with 

practical axial distance improved the prediction variance performance of the 

design throughout the design space by extending the axial points beyond the 

cuboidal region of interest. 

In this study, the partially replicated variations of the CCD with 

practical axial distance was evaluated in the cuboidal region for k = 3 to 6 

factors. These design variations were evaluated using A, D, G and V efficiency 

criteria and variance dispersion graphs (VDG) and fraction of design space 

(FDS) graphs used to measure the spread of the prediction variances. 

3.0 Methods  

3.1 Partial replications 

The partially replicated variations of the central composite designs 

considered in this study, as provided by Draper (1982) are: (i) Two cubes plus 

one star (𝐶2𝑆1); (ii). One cube plus two stars (𝐶1𝑆2); (iii). Three cubes plus one 

star (𝐶3𝑆1); (iv). One cube plus three stars (𝐶1𝑆3); (v). four cubes plus one star 

(𝐶4𝑆1); and (vi). One cube plus four stars (𝐶1𝑆4). These partially replicated 

design variations are compared with the CCD without replication of the cube or 

star portions, that is, (vii). One cube plus one star (𝐶1𝑆1). Each design variation 

was augmented with 𝑛0  centre points to effectively determine the effect of 

increasing the number of centre points on the prediction capabilities of the 

replicated designs. 
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3.2 Measures of Design Properties  

The D-efficiency is a useful statistical tool for quantifying the quality of 

estimated model parameters, and is defined by  𝐷𝑒𝑓𝑓 = {|𝑋′𝑋|1 𝑝⁄ 𝑁⁄ } ×

100, where 𝑁 = 2𝑘−𝑞𝑛𝑐 + 2𝑛𝑠𝑘 + 𝑛0, q is the fraction of 2𝑘, 𝑛𝑐 = number of 

replications of the cube, 𝑛𝑠 = number of replications of the star, 𝑛0 = number 

of replications of the centre point and k is the number design factors. The power, 

1 𝑝⁄ , is the inverse of the number of model parameter estimates, p, being 

assessed as the determinant of the information matrix is being computed. The 

A-efficiency, given by 𝐴 − 𝑒𝑓𝑓. = 100𝑝 {𝑡𝑟𝑎𝑐𝑒[𝑁(𝑋′𝑋)−1]}⁄ , is obtained as a 

function of the trace of the inverse of the information matrix, (𝑋′𝑋)−1. Also, 

the G-efficiency, given by 𝐺 − 𝑒𝑓𝑓. = 100𝑝 [𝑁 𝑚𝑎𝑥 𝑣 (𝑥)]⁄ , is obtained from 

the scaled maximum prediction variance of the design. For the V-criterion, a 

design is V-optimal if it minimizes the normalized integrated scaled prediction 

variance, 𝑉 − 𝑜𝑝𝑡. = 𝑚𝑖𝑛
1

𝛹
∫ 𝑣(𝑥)𝑑𝑥

𝛺
, where 𝛹 = ∫ 𝑑𝑥

𝛺
 is the volume of the 

design space. For A-, D- and G-efficiencies, higher values are desirable, while 

smaller values are desirable for the V-criterion. MATLAB version 14 software 

was used to compute the efficiency criteria of the partially replicated designs. 

3.3 Graphical methods for comparison 

 According to Anderson-Cook et al. (2009), single-value criteria such as 

the D- and G-efficiencies do not completely show the prediction variance 

characteristics of response surface designs. That is, the strengths and 

weaknesses of a response surface design under evaluation cannot be captured 

completely using such single-value criteria. On the other hand, graphical 

methods of prediction variance assessment can completely display the 

distribution of the prediction variances of a design throughout the design space. 

One of these graphical methods in the variance dispersion graph (VDG). 

Giovannitti-Jensen and Myers (1989) developed the VDG as a prediction 

variance-based graphical method which displays the spread of unscaled and 

scaled prediction variances of a multi-dimensional design region on a two-

dimensional space. Prediction variance assessment using the VDG requires 

plotting the prediction variances against the radius, r, of the sphere from zero 

up to the outer region of the sphere covering the region of interest. Zahran et al 

(2003) developed the fraction of design space (FDS) graph to complement the 

VDG in prediction variance assessment of both spherical and cuboidal design 

regions. The FDS graphs display the characteristics of the scaled prediction 

variance (SPV) throughout a multi-dimensional region on a two-dimensional 
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space with a single curve. The volume of the fraction of the design space is the 

key factor in the concept of the FDS criterion. The stability and prediction 

capability of a design are determined by how flat and closer to the horizontal 

line the graph is. The FDS graphs were computed and plotted using Design 

Expert version 12, while the VDGs were computed and plotted using MATLAB 

version 14. 

 

 

4.0  Results and Discussion  

4.1 Results of alphabetic criteria 

For ease of use in this study, A, D, G and V were used to refer to the four  

single value criteria, A-, D- and G-efficiencies and V-criterion, respectively. In 

Table 1, the results for the single-value efficiency criteria and V-optimality are 

displayed. For k = 3 factors, the table shows that additional centre point 

improves V with smaller values and A with higher percentage efficiency values. 

Increasing the number of centre points is beneficial for D and G for the higher 

replication of the cube, three cubes plus one star and four cubes plus one star, 

which have higher efficiency values when the number of centre points 

increases. The best D efficiency values are obtained for the cube-replicated 

design, 𝐶2𝑆1, which maintained the highest D efficiency values even as the 

number of centre points increases. The unreplicated CCD, 𝐶1𝑆1, has the overall 

best values for A, G and V with the highest percentage efficiency values for A 

and G and smallest optimality value for V. Also, 𝐶1𝑆1 is the best for G without 

an additional centre point. However, with increase in number of centre points, 

𝐶2𝑆1 has the best G efficiency value. 

Table 1: Values of the A, D, G and V Criteria for the Partially Replicated 

Practical CCD 

k Design  𝑛0 = 1 𝑛0 = 3 

F 2𝑛𝑠𝑘       α N    D            A        G                V N    D         A            G               V 

3 

 
 

 

 
 

 

C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

8 

16 
8 

24 

8 
32 

8 

6 

6 
12 

6 

18 
6 

24 

1.3161 

1.3161 
1.3161 

1.3161 

1.3161 
1.3161 

1.3161 

15 

23 
21 

31 

27 
39 

33 

55.3       37.5     89.1        5.9864 

55.5       30.9     84.7        7.7480    
51.4       34.2     69.6        6.1975 

53.6       25.4     64.2        9.7021 

47.6       30.2     57.5        6.6242 
51.6       21.4     51.5        11.7102 

44.5       26.8     49.1        7.1141 

17 

25 
23 

33 

29 
41 

35 

52.5      42.7     79.3        4.7882 

54.8      38.3     83.9        5.5476 
49.8      39.1     64.6        5.1268 

54.0      32.8     67.7        6.5621 

46.8      34.5     54.7        5.5637 
52.5      28.3     56.5        7.6494 

44.1      30.7     47.7        6.0216 

4 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

16 
32 

16 

48 
16 

64 

16 

8 
8 

16 

8 
24 

8 

32 

1.4142 
1.4142   

1.4142 

1.4142 
1.4142 

1.4142 

1.4142 

25 
41 

33 

57 
39 

73 

49 

58.1       41.8     63.0        7.5417 
32.2       12.3     37.9        25.9217   

55.0       42.7     75.6        7.0583 

54.9       25.9     52.9        13.1066 
51.2       39.9     63.4        7.1739 

52.6       21.4     42.1        16.0643 

47.8       36.8     54.7        7.4575 

27 
43 

35 

59 
41 

75 

51 

55.8      44.2     58.5        6.4203 
32.0      13.2     37.0        23.8894 

44.3      44.6     71.7        6.4323 

54.9      30.3     54.6        9.8632 
49.8      41.3     60.8        6.7236 

53.0      25.4     43.9        11.8071 

46.8      37.8     53.0        7.0890 
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5 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

32 
64 

32 

96 
32 

128 
32 

10 
10 

20 

10 
30 

30 
40 

1.4954   
1.4954 

1.4954 

1.4954   
1.4954 

1.4954 
1.4954 

43 
75 

53 

107 
63 

139 
73 

60.2       41.6     90.9        8.4625 
57.7       29.8     55.1        13.0996    

58.9       47.4     85.2        6.6552 

54.8       22.9     39.4        17.8309 
55.8       47.0     73.5        6.0707 

52.3       18.5     30.7        22.5881 
52.7       45.0     64.9        5.8222 

45 
77 

55 

109 
65 

141 
75 

58.7      43.8     90.9        7.1443 
57.3      32.6     56.4        10.5355 

57.5      48.4     82.2        6.0779 

54.8      25.4     40.7        14.0473 
54.6      47.4     71.4        5.7248 

52.6      20.7     31.8        17.5922 
51.7      45.2     63.3        5.5798 

6 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

32 

64 

32 
96 

32 

128 
32 

12 

12 

24 
12 

36 

12 
48 

1.5651 

1.5651 

1.5651 
1.5651 

1.5651 

1.5651 
1.5651 

45 

77 

57 
109 

69 

141 
81 

61.5       48.1     94.0        10.4743 

61.1       37.4     68.0        13.9348    

57.7       50.7     57.3        9.6140 
59.0       29.7     50.5        17.7553 

53.1       47.8     64.6        9.8328 

57.0       24.6     39.5        21.6692 
49.2       44.2     56.1        10.3236 

47 

79 

59 
111 

71 

143 
83 

59.6      48.6     90.0        9.7810 

60.2      39.1     70.7        12.3548 

56.1      50.4     73.9        9.4249  
58.5      31.5     51.5        15.3747  

51.9      47.4     62.9        9.7848 

56.9      26.3     40.5        18.4661 
48.2      43.8     54.8        10.3343 

  

For the four-factor CCD, k = 4, additional centre point improves A and 

V but the effect is inconsistent for D and G, where, for the cube-replicated 

options, 𝐶3𝑆1 and 𝐶4𝑆1, additional points at the centre improves D and G which 

is not the case with the replication of the star. The best value for A and G are 

obtained with 𝐶1𝑆2 even with additional centre point. However, the values of 

the four alphabetic criteria indicated that further replications of the star does not 

in any way improve the performances of the designs. The unreplicated CCD, 

𝐶1𝑆1, gives the best values for D even with additional point at the centre. Also, 

with additional centre point, 𝐶1𝑆1  gives the best value for V but was 

outperformed by 𝐶1𝑆2 when there is only one centre point. It is important to 

notice that replicating the cube portion from 𝐶2𝑆1  to 𝐶3𝑆1  improves the 

design’s alphabetic criteria, which begins to deteriorate with further replication 

of the cube. For k = 3 and 4, further replication of the CCD does not improve 

any of the four alphabetic criteria.  

 The effects of additional centre point on the four alphabetic criteria for 

k = 3 and 4 factors are also true for k = 5 and 6. However, for k = 5, with or 

without additional centre point, 𝐶1𝑆1 gives the best values for D and G while 

𝐶1𝑆2 offers the best values for A. Unlike the cases of k = 3 and 4, the higher the 

star is replicated, the better is the value of V with or without additional centre 

points. For k = 6, 𝐶1𝑆1 gives the best for G with or without an additional centre 

point and also the best for D with one centre point, while 𝐶2𝑆1 performs better 

with an additional centre point. Also, 𝐶1𝑆2 gives the best A and V values with 

and without an additional centre point.  

4.2 Results of graphical methods 

 If the interest of a practitioner is to understand the prediction variance 

distribution of a design throughout the entire design region, that is, to 

understand the stability of the prediction variance throughout the entire design 

region and/or where in the region the design has the best and worst prediction 

variance, the two graphical methods are formidable tools for exploring the 

prediction variance properties of competing designs. In this section, the VDG 

and FDS graphs were plotted for the unscaled and scaled prediction variances 
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in the spherical region for 𝑛0 = 1 and 3. The graphs are displayed in Figures 1 

to 4 for the VDGs and Figures 5 to 9 for the FDS plots. The VDG and FDS 

graphs show that replicating the star resulted in minimum and stable spread of 

the prediction variances throughout the entire design space for both unscaled 

and scaled prediction variances. The VDGs show that the star-replicated 

practical CCD options have the lowest distribution of the unscaled and scaled 

prediction variances. All the designs maintain a slightly stable prediction 

variance from the origin up to the point where the radius, r = 1.0, then the 

prediction variance increases rapidly as r increases towards the extreme of the 

design region. An additional centre point tends to reduce the prediction variance 

for both the unscaled and scaled prediction variance.  

                      

                 (a)          (b) 

Figure 1: VDG for Unscaled and Scaled Prediction Variance for (a) 𝑛0 = 1 and 

(b) 𝑛0 = 3, and k = 3 
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 (a)          (b) 

Figure 2: VDG for Unscaled and Scaled Prediction Variance for (a) 𝑛0 = 1 and 

(b) 𝑛0 = 3 and, k = 4 
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   (a)          (b) 

Figure 3: VDG of Unscaled and Scaled Prediction Variance for (a) 𝑛0 = 1 and 

(b) 𝑛0 = 3, for k = 5 
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      (a)             (b) 

Figure 4: VDG for Unscaled and Scaled Prediction Variance for (a) 𝑛0 = 1 and 

(b) 𝑛0 = 3, and k = 6 

  The FDS plots for k = 3 show unique results. The unreplicated CCD 

option, 𝐶1𝑆1, have the worst unscaled prediction variance irrespective of the 

number of centre points. Scaling the prediction variance gives a design undue 

advantage over the others due to the smaller number of runs compared to the 

replicated options. Hence, the design has the smallest scaled prediction variance 

for the entire design space with or without additional centre points. The star-

replicated options display the best (smallest) unscaled prediction variance, 

which improves with additional centre points. For k = 4, 5 and 6, the star-

replicated options display the smallest and most stable unscaled and scaled 

prediction variance throughout the entire design space. The prediction variance 

of the star-replicated CCD options gets better with scaling and with additional 

centre points. Hence, the star-replicated designs are recommended for the 

prediction of responses involving practical CCD in the spherical region.   
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   (a)          (b) 

Figure 5: FDS Graphs for the Unscaled and Scaled Prediction Variance for (a) 

𝑛0 = 1 and (b) 𝑛0 = 3, k = 3 
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   (a)          (b) 

Figure 6: FDS Graphs for Unscaled and Scaled Prediction Variance for (a) 𝑛0 =
1 and (b) 𝑛0 = 3, k = 4 
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      (a)          (b) 

Figure 7: FDS Graphs for Unscaled and Scaled Prediction Variance for (a) 𝑛0 =
1 and (b) 𝑛0 = 3, k = 5 
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(a)    (b) 

Figure 8: FDS Graphs for Unscaled and Scaled Prediction Variance for (a) 𝑛0 =
1 and (b) 𝑛0 = 3, k = 6 

 

4.3 Determination of Degrees of Freedom  

According to Draper (1982) and Montgomery (2013), one of the reasons 

for replicating the centre point of a design was to obtain the required error 

degrees of freedom for the test of hypothesis. The recommendation from 

Montgomery (2013) is a minimum of three degrees of freedom for model lack-

of-fit and four degrees of freedom for pure error. Fewer degrees of freedom will 

lead to a test that may not detect model lack-of-fit.  In this section, we show that 

we can obtain the exact degrees of freedom required for pure error and test of 

model lack-of-fit by partially replicating the cube and sta portions of the CCD 

with practical axial distance and with or without replicating the centre point. 

According to Montgomery (2013), the total error sum of squares is calculated 

as the aggregate of the pure error sum of squares and the lack-of-fit sum of 

squares. Furthermore, the residual or total error degrees of freedom, 𝑅𝐸𝑑𝑓, is 

calculated as the difference between the total number of runs, N, and the number 

of model parameters, p, being tested. That is 

𝑅𝐸𝑑𝑓 = 𝑁 − 𝑝.        (1) 
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The pure error degrees of freedom, 𝑃𝐸𝑑𝑓 , is the sum over all the 

replicates of each run. That is 

𝑃𝐸𝑑𝑓 = ∑ (𝑁𝑟𝑒𝑝𝑠,𝑖 − 1)𝑁
𝑖=1 = ∑ (𝐹𝑟𝑒𝑝,𝑖 − 1)𝐹

𝑖=1 + ∑ (𝐻𝑟𝑒𝑝,𝑖 − 1) + 𝑛0 − 1𝐻
𝑖=1 , 

  (2) 

 = (𝑛𝑐 − 1)𝑓 + 2(𝑛𝑠 − 1)𝑘 + (𝑛0 − 1)    (3) 

where 𝑁𝑟𝑒𝑝𝑠,𝑖, =  number of times the ith  run is replicated, 𝐹𝑟𝑒𝑝,𝑖 = the number 

of times the cube is replicated, 𝐻𝑟𝑒𝑝,𝑖  = the number of times the star is 

replicated, and 𝐻 = 2𝑛𝑠𝑘 . Therefore, any portion of the CCD that was not 

replicated does not contribute to the degrees of freedom. Therefore, the lack-

of-fit degrees of freedom, 𝐿𝑂𝐹𝑑𝑓, is the difference between the residual degrees 

of freedom and the pure error degrees of freedom. That is, 

𝐿𝑂𝐹𝑑𝑓 = 𝑅𝐸𝑑𝑓 − 𝑃𝐸𝑑𝑓.        (4) 

 The exact pure error and lack-of-fit degrees of freedom for some 

variations of the partially replicated practical CCD are presented in Table 2 for 

k = 3 to 6 factors. 
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Table 2: Exact Pure Error and Lack-of-Fit Degrees of Freedom for k = 3 

to 6 Factors 

k Design f 𝑛𝑐 F 𝑛𝑠 H p 𝑛0 = 1 𝑛0 = 3 

N        LOFdf       PEdf N        LOFdf      PEdf 

3 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

8 

8 

8 

8 

8 

8 

8 

1 

2 

1 

3 

1 

4 

1 

8 

16 

8 

24 

8 

32 

8 

1 

1 

2 

1 

3 

1 

4 

6 

6 

12 

6 

18 

6 

24 

10 15         5               0 

23         5               8 

21         5               6 

31         5              16           

27         5              12  

39         5              24 

33         5              18 

17         5               2  

25         5              10  

23         5               8  

33         5              18 

29         5              14  

41         5              26  

35         5              20 

4 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

16 

16 

16 

16 

16 

16 

16 

1 

2 

1 

3 

1 

4 

1 

16 

32 

16 

48 

16 

64 

16 

1 

1 

2 

1 

3 

1 

4 

8 

8 

16 

8 

24 

8 

32 

15 

 

 

 

25        10              0 

41        10             16 

33        10              8 

57        10             32 

41        10             16 

73        10             48 

49        10             24 

27         10             2 

43         10            18  

35         10            10 

59         10            34 

43         10            18 

75         10            50 

51         10            26 

5 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

32 

32 

32 

32 

32 

32 

32 

1 

2 

1 

3 

1 

4 

1 

32 

64 

32 

96 

32 

128 

32 

1 

1 

2 

1 

3 

1 

4 

10 

10 

20 

10 

30 

10 

40 

21 

 

 

43        22             0 

75        22            32  

53        22            10 

107      22            64 

63        22            20 

139      22            96 

73        22            30 

45         22             2 

77         22            34 

55         22            12 

109       22            66 

65         22            22 

141       22            98 

75         22            32 

6 C1S1 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

64 

64 

64 

64 

64 

64 

64 

1 

2 

1 

3 

1 

4 

1 

64 

128 

64 

192 

64 

256 

64 

1 

1 

2 

1 

3 

1 

4 

12 

12 

24 

12 

36 

12 

48 

28 

 

 

77        49             0 

141      49            64 

89         49             12 

205       49           128 

101       49             24 

269       49           192    

113       49             36 

79         49             2 

143       49            66 

91         49            14   

207       49          130 

103       49            26 

271       49          194  

115       49            38 

 

5. Summary and Recommendations 

 Additional centre points improved the A and V for all the factors 

considered. The unreplicated CCD, 𝐶1𝑆1, offers the best values for the A and V 

for k = 3 factors. Replicating the cube is beneficial only up to 𝐶3𝑆1 , the 

replications improved the performances of the designs’ alphabetic criteria, 

beyond which alphabetic criteria begin to deteriorate. For k = 5 factors, the 

higher the replication of the star, the smaller the V and the better the design; this 

characteristic is unique to k = 5 factors. Except for k = 3, the best value for A 

was obtained from the star-replicated CCD, 𝐶1𝑆2, with or without an additional 

centre point.  

In general, the higher the replication of the star portion of the CCD 

provided uniform the distribution of both the unscaled and scaled prediction 

variances throughout the entire design space. This is true using both the 
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variance dispersion graphs and the fraction of design space graphs, and for all 

the factors considered in the study. 
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