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Evaluation of Practical Central Composite Designs for
Optimum Exploration of Response Surfaces

Eugene C. Ukaegbu® 2 and Polycarp E. Chigbu?®

The drawback of the spherical, a=Vk, and rotatable, a=f, =2k axial distances of the central
composite designs (CCD) is the extreme values of the axial distance as the number of
experimental factors, k, increases, resulting in impractical axial distances beyond the bounds
of the design region. The practical central composite design compensates for this drawback by
providing more stable and less extreme axial distance irrespective of the size of k. This study
focuses on the evaluation of partially replicated cube and star portions of the variations of the
CCD with practical axial distance, a=k. By replicating the cube and star portions. The
variation of the partially replicated central composite designs was evaluated using the
following single-value optimality criteria: A-, D- and E-efficiencies and V-criterion. Fraction
of design space graphs (FDSG) and variance dispersion graphs (VDG) were used to assess the
scaled and unscaled prediction variances across the design regions. The replication of the star
points yielded small and better distribution of the prediction variance across the design space
and better results for the A-, G- and V-criterion.. On the contrary, The D-efficiency was not
improved by the replication of the cube portion. Lack-of-fit, residual and pure error degrees of
freedom of partially replicated CCD were ascertained.

Keywords: Axial distance, degrees of freedom, design efficiency, lack-of-fit,
replication
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1.0 Introduction

In response surface methodology, most popular and commonly used response
surface design is the CCD which was developed by Box and Wilson (1951).
This design is characterized by three distinct components: the centre, the star
(axial component) and the cube (factorial component). The coordinates of the
cube portion is of the form, (£1, +1,...,+1) for the k independent variables,
(x4,...,x;). This iimplies that the cube has the highest value set at +1 and the
lowest value set at -1 which defines the extreme regions of the unit cube. The
star has coordinates of the form, , (0, ta, O, ..., 0),...,(0, O, ..., ),
such that a defines the position of the star points in the design region. The
highest value of the star points is at +a and lowest value at —a. The centre
component has coordinates of the form, (0, 0, ..., 0).
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Placing the star points on the axis of the design space defined by the
CCD determines the distance of the star points from the centre of the design
space and is important in the performance of the design with respect to
prediction of responses. The axial distance, «, is the distance of the star points
from the centre of the design space along the axes of the CCD. There are very
important axial distances which exist in the literature for the CCD for different
experimental conditions. One of such axial distances is the spherical alpha
which puts the design points on a sphere of distance, @ = vk, from the centre
of the design region. Another axial distance is the rotatable alpha, with distance,
a= ‘i/? from the centre of the design space, where f = 2k factorial runs,
which gives a CCD that has equal precision at equal distance from the centre of
the design region. Then, the cuboidal alpha at distance, a = 1, puts the star
points at the centre of the face of the unit cube, ensuring that the star points are
distance @ = 1 from the centre of the cuboidal region.

The problem of the spherical and rotatable axial distances, as pointed
out by Li et al (2009), is that as the number of factors increases, the values of
the axial distances could be impracticable in response surface exploration.
Consider, for example, an experiment involving k = 10, then, V10 = 3.1623

and /210 = 56569 , respectively, for the spherical and rotatable axial
distances, which are not feasible values (see Table 1 for detailed results of the
axial distances for k = 6 to 10). Therefore, Anderson and Whitcomb (2005)

provided the practical axial distance, @ = Yk, which is a compromise between
the spherical and cuboidal axial distances. The practical alpha, which is
moderate and less extreme, also offers reasonable variance inflation factor
(VIF) as the number of factors, k increased. Ukaegbu (2018) compared the
prediction variances of the practical axial distance of the CCD with the
prediction variances of the spherical, face-centred, rotatable and orthogonal
axial distances for 3 to 6 design factors using variance dispersion graphs (VDG)
and the fraction of design space (FDS) graphs.

In the present study, we employ the advantage that the practical alpha
offers in evaluating the CCD with partial replications of the factorial and star
portions. To enhance the evaluation and comparisons of the replicated designs
variations, we used three popular single-value efficiency criteria, the A-, D- and
G-efficiencies, and the V-criterion. Graphical methods employed in assessing
and comparing the prediction variance properties of the partially replicated
design variations are the variance dispersion graphs (VDG) and the fraction of
design space (FDS) graphs. The number of factors under consideration is k = 3
to 6 factors.

2.0 Literature Review

Anderson-Cook et al. (2009) listed some of the properties of a good
design for fitting second-order response surfaces, some of which include
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providing sufficient information to allow the test of model lack-of-fit; be robust
to outliers in the data; be robust to errors in the control of design levels; provide
a good distribution of the prediction variance throughout the design region; etc.
(see Myers and Montgomery, 2002 and Anderson-Cook, 2005 for further
references). The CCD with spherical and rotatable axial distances have
limitations in attaining some of the properties as the number of factors increases
due to resulting impractical axial distances.

As already stated, the practical alpha, @ = Yk, was presented by
Anderson and Whitcomb (2005) as a compromise between the spherical and
cuboidal axial distances. According to Anderson and Whitcomb (2005), this
practical axial distance provides (i) acceptable variance inflation factor (VIF),
and (ii) design points which are less extreme with an increase in the number of
design factors. Generally, the VIF is a measure of how much the variances of
estimated model parameters are inflated when compared to the predictor
variables not being linearly related. This measure is very useful in detecting the
presence of multicollinearity in regression models. Li et al. (2009) submitted
that the practical axial distance results in near-rotatable central composite
designs and offers stable scaled prediction variance across the design region. In
the study by Li et al. (2009), the CCD with practical axial distance was shown
to perform better than the other competing designs in the cuboidal region
considering the scaled and unscaled prediction variances; the design with
practical axial distance improved the prediction variance performance of the
design throughout the design space by extending the axial points beyond the
cuboidal region of interest.

In this study, the partially replicated variations of the CCD with
practical axial distance was evaluated in the cuboidal region for k = 3 to 6
factors. These design variations were evaluated using A, D, G and V efficiency
criteria and variance dispersion graphs (VDG) and fraction of design space
(FDS) graphs used to measure the spread of the prediction variances.

3.0 Methods
3.1  Partial replications

The partially replicated variations of the central composite designs
considered in this study, as provided by Draper (1982) are: (i) Two cubes plus
one star (C,S;); (ii). One cube plus two stars (C;S,); (iii). Three cubes plus one
star (C3S,); (iv). One cube plus three stars (C;S3); (v). four cubes plus one star
(C4S1); and (vi). One cube plus four stars (C;S,). These partially replicated
design variations are compared with the CCD without replication of the cube or
star portions, that is, (vii). One cube plus one star (C;S;). Each design variation
was augmented with n, centre points to effectively determine the effect of
increasing the number of centre points on the prediction capabilities of the
replicated designs.
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3.2 Measures of Design Properties

The D-efficiency is a useful statistical tool for quantifying the quality of
estimated model parameters, and is defined by Derr = {IX'X|YP/N} x

100, where N = 2¥~9n, + 2n.k + ny, q is the fraction of 2%, n, = number of
replications of the cube, ng, = number of replications of the star, n, = number
of replications of the centre point and k is the number design factors. The power,
1/p, is the inverse of the number of model parameter estimates, p, being
assessed as the determinant of the information matrix is being computed. The
A-efficiency, given by A — eff.= 100p/{trace[N(X'X)~1]}, is obtained as a
function of the trace of the inverse of the information matrix, (X'X)~*. Also,
the G-efficiency, given by G — ef f.= 100p/[N max v (x)], is obtained from
the scaled maximum prediction variance of the design. For the V-criterion, a
design is V-optimal if it minimizes the normalized integrated scaled prediction

. .1 .
variance, V — opt.= min_ [, v(x)dx, where ¥ = [ dx is the volume of the

design space. For A-, D- and G-efficiencies, higher values are desirable, while
smaller values are desirable for the V-criterion. MATLAB version 14 software
was used to compute the efficiency criteria of the partially replicated designs.

3.3 Graphical methods for comparison

According to Anderson-Cook et al. (2009), single-value criteria such as
the D- and G-efficiencies do not completely show the prediction variance
characteristics of response surface designs. That is, the strengths and
weaknesses of a response surface design under evaluation cannot be captured
completely using such single-value criteria. On the other hand, graphical
methods of prediction variance assessment can completely display the
distribution of the prediction variances of a design throughout the design space.
One of these graphical methods in the variance dispersion graph (VDG).
Giovannitti-Jensen and Myers (1989) developed the VDG as a prediction
variance-based graphical method which displays the spread of unscaled and
scaled prediction variances of a multi-dimensional design region on a two-
dimensional space. Prediction variance assessment using the VDG requires
plotting the prediction variances against the radius, r, of the sphere from zero
up to the outer region of the sphere covering the region of interest. Zahran et al
(2003) developed the fraction of design space (FDS) graph to complement the
VDG in prediction variance assessment of both spherical and cuboidal design
regions. The FDS graphs display the characteristics of the scaled prediction
variance (SPV) throughout a multi-dimensional region on a two-dimensional
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space with a single curve. The volume of the fraction of the design space is the
key factor in the concept of the FDS criterion. The stability and prediction
capability of a design are determined by how flat and closer to the horizontal
line the graph is. The FDS graphs were computed and plotted using Design
Expert version 12, while the VDGs were computed and plotted using MATLAB
version 14.

4.0 Results and Discussion
4.1  Results of alphabetic criteria

For ease of use in this study, A, D, G and V were used to refer to the four
single value criteria, A-, D- and G-efficiencies and V-criterion, respectively. In
Table 1, the results for the single-value efficiency criteria and V-optimality are
displayed. For k = 3 factors, the table shows that additional centre point
improves V with smaller values and A with higher percentage efficiency values.
Increasing the number of centre points is beneficial for D and G for the higher
replication of the cube, three cubes plus one star and four cubes plus one star,
which have higher efficiency values when the number of centre points
increases. The best D efficiency values are obtained for the cube-replicated
design, C,S;, which maintained the highest D efficiency values even as the
number of centre points increases. The unreplicated CCD, C;S;, has the overall
best values for A, G and V with the highest percentage efficiency values for A
and G and smallest optimality value for V. Also, C,S; is the best for G without
an additional centre point. However, with increase in number of centre points,
C,S; has the best G efficiency value.

Table 1: Values of the A, D, G and V Criteria for the Partially Replicated
Practical CCD

Design nyg=1 ng=3

F 2nsk a N D A G \ N D A G \
C:S: 8 6 13161 | 15 | 553 375 89.1 5.9864 17 525 427 793 4.7882
C.Sy 16 | 6 13161 | 23 | 555 309 847 7.7480 25 548 383 839 5.5476
CiS; 8 12 13161 | 21 | 514 342 696 6.1975 23 498 391 646 5.1268
CsS: 24 | 6 13161 | 31 | 536 254 64.2 9.7021 33 540 328 67.7 6.5621
CiSs 8 18 13161 | 27 | 476 302 575 6.6242 29 46.8 345 547 5.5637
CsSy 32 | 6 13161 | 39 | 516 214 515 11.7102 | 41 525 283 565 7.6494
CiSq 8 24 13161 | 33 | 445 268 49.1 7.1141 35 441 307 477 6.0216
CiSy 16 | 8 14142 | 25 | 581 418 63.0 7.5417 27 558 442 585 6.4203
C.Sy 32 |8 14142 | 41 | 322 123 379 259217 | 43 320 132 370 23.8894
CiS; 16 | 16 14142 | 33 | 55.0 427 756 7.0583 35 443 446 717 6.4323
CsSy 48 | 8 14142 | 57 | 549 259 529 13.1066 | 59 549 303 54.6 9.8632
CiSs 16 | 24 14142 | 39 | 512 399 634 7.1739 41 498 413 6038 6.7236
CsS: 64 | 8 14142 | 73 | 526 214 421 16.0643 | 75 53.0 254 439 11.8071
CiS4 16 | 32 14142 | 49 | 478 368 547 7.4575 51 46.8 378 53.0 7.0890
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CiS: 32 10 14954 | 43 | 60.2 416 90.9 8.4625 45 58.7 438 90.9 7.1443
C2S: 64 10 14954 | 75 | 57.7 298 55.1 13.0996 | 77 573 326 564 10.5355
CiS; 32 |20 14954 | 53 | 589 474 852 6.6552 55 575 484 822 6.0779
CsS: 96 10 14954 | 107 | 548 229 394 17.8309 | 109 | 54.8 254 40.7 14.0473
CiSs 32 | 30 14954 | 63 | 55.8 470 735 6.0707 65 546 474 714 5.7248
CsS: 128 | 30 14954 | 139 | 523 185 30.7 22,5881 | 141 | 526 20.7 318 17.5922
CiS4 32 |40 14954 | 73 | 52.7 450 64.9 5.8222 75 517 452 633 5.5798
CiS: 32 12 15651 | 45 | 61.5 481 94.0 10.4743 | 47 59.6 486 90.0 9.7810
C2S: 64 12 15651 | 77 | 61.1 374 68.0 13.9348 | 79 60.2 39.1 70.7 12.3548
CiS: 32 | 24 15651 | 57 | 57.7 50.7 573 9.6140 59 56.1 504 739 9.4249
CsS: 96 12 15651 | 109 | 59.0 29.7 50.5 17.7553 | 111 | 585 315 515 15.3747
CiSs 32 | 36 15651 | 69 | 53.1 478 64.6 9.8328 71 519 474 629 9.7848
CsS1 128 | 12 15651 | 141 | 57.0 246 395 21.6692 | 143 | 56.9 26.3 405 18.4661
CiSs 32 | 48 15651 | 81 | 492 442 56.1 10.3236 | 83 48.2 438 548 10.3343

For the four-factor CCD, k = 4, additional centre point improves A and
V but the effect is inconsistent for D and G, where, for the cube-replicated
options, C5S; and C,S;, additional points at the centre improves D and G which
is not the case with the replication of the star. The best value for A and G are
obtained with C,S, even with additional centre point. However, the values of
the four alphabetic criteria indicated that further replications of the star does not
in any way improve the performances of the designs. The unreplicated CCD,
C;S1, gives the best values for D even with additional point at the centre. Also,
with additional centre point, C;S; gives the best value for V but was
outperformed by C,;S, when there is only one centre point. It is important to
notice that replicating the cube portion from C,S; to C3S; improves the
design’s alphabetic criteria, which begins to deteriorate with further replication
of the cube. For k = 3 and 4, further replication of the CCD does not improve
any of the four alphabetic criteria.

The effects of additional centre point on the four alphabetic criteria for
k = 3 and 4 factors are also true for k = 5 and 6. However, for k = 5, with or
without additional centre point, C;S; gives the best values for D and G while
C, S, offers the best values for A. Unlike the cases of k = 3 and 4, the higher the
star is replicated, the better is the value of V with or without additional centre
points. For k = 6, C;S; gives the best for G with or without an additional centre
point and also the best for D with one centre point, while C,S; performs better
with an additional centre point. Also, C;S, gives the best A and V values with
and without an additional centre point.

4.2 Results of graphical methods

If the interest of a practitioner is to understand the prediction variance
distribution of a design throughout the entire design region, that is, to
understand the stability of the prediction variance throughout the entire design
region and/or where in the region the design has the best and worst prediction
variance, the two graphical methods are formidable tools for exploring the
prediction variance properties of competing designs. In this section, the VDG
and FDS graphs were plotted for the unscaled and scaled prediction variances
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in the spherical region for n, = 1 and 3. The graphs are displayed in Figures 1
to 4 for the VDGs and Figures 5 to 9 for the FDS plots. The VDG and FDS
graphs show that replicating the star resulted in minimum and stable spread of
the prediction variances throughout the entire design space for both unscaled
and scaled prediction variances. The VDGs show that the star-replicated
practical CCD options have the lowest distribution of the unscaled and scaled
prediction variances. All the designs maintain a slightly stable prediction
variance from the origin up to the point where the radius, r = 1.0, then the
prediction variance increases rapidly as r increases towards the extreme of the
design region. An additional centre point tends to reduce the prediction variance
for both the unscaled and scaled prediction variance.
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Figure 1: VDG for Unscaled and Scaled Prediction Variance for (a) n, = 1 and
(b)ny, =3,and k=3
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Figure 4: VDG for Unscaled and Scaled Prediction Variance for (a) n, = 1 and
(b)ny, =3,and k=6

The FDS plots for k = 3 show unique results. The unreplicated CCD
option, C;S;, have the worst unscaled prediction variance irrespective of the
number of centre points. Scaling the prediction variance gives a design undue
advantage over the others due to the smaller number of runs compared to the
replicated options. Hence, the design has the smallest scaled prediction variance
for the entire design space with or without additional centre points. The star-
replicated options display the best (smallest) unscaled prediction variance,
which improves with additional centre points. For k = 4, 5 and 6, the star-
replicated options display the smallest and most stable unscaled and scaled
prediction variance throughout the entire design space. The prediction variance
of the star-replicated CCD options gets better with scaling and with additional
centre points. Hence, the star-replicated designs are recommended for the
prediction of responses involving practical CCD in the spherical region.
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Figure 8: FDS Graphs for Unscaled and Scaled Prediction Variance for (a) ny, =
land (b)ny, =3,k=6

4.3  Determination of Degrees of Freedom

According to Draper (1982) and Montgomery (2013), one of the reasons
for replicating the centre point of a design was to obtain the required error
degrees of freedom for the test of hypothesis. The recommendation from
Montgomery (2013) is a minimum of three degrees of freedom for model lack-
of-fit and four degrees of freedom for pure error. Fewer degrees of freedom will
lead to a test that may not detect model lack-of-fit. In this section, we show that
we can obtain the exact degrees of freedom required for pure error and test of
model lack-of-fit by partially replicating the cube and sta portions of the CCD
with practical axial distance and with or without replicating the centre point.
According to Montgomery (2013), the total error sum of squares is calculated
as the aggregate of the pure error sum of squares and the lack-of-fit sum of
squares. Furthermore, the residual or total error degrees of freedom, REy, is
calculated as the difference between the total number of runs, N, and the number
of model parameters, p, being tested. That is

RE4 = N —p. 1)



Journal of the Chartered Institute of Statisticians of Nigeria, Vol. 36 (December, 2024) 43

The pure error degrees of freedom, PE;;, is the sum over all the
replicates of each run. That is

PEdf = §V=1(Nreps,i - 1) = Zf:l(Frep,i - 1) + Z?=1(Hrep,i - 1) +ny,—1,
(2)

= (nc - 1)f + z(ns - Dk + (no -1) 3)

where Ny.qp,s;, = number of times the i run is replicated, Frep,i = the number
of times the cube is replicated, H,.,; = the number of times the star is
replicated, and H = 2n4k. Therefore, any portion of the CCD that was not
replicated does not contribute to the degrees of freedom. Therefore, the lack-
of-fit degrees of freedom, LOF,y, is the difference between the residual degrees
of freedom and the pure error degrees of freedom. That is,

The exact pure error and lack-of-fit degrees of freedom for some
variations of the partially replicated practical CCD are presented in Table 2 for
k = 3 to 6 factors.
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Table 2: Exact Pure Error and Lack-of-Fit Degrees of Freedom for k = 3
to 6 Factors

k | Design | f n. | F ng |H | p ng=1 ng =3
N LOFat PEadt N LOFd  PEdt
3[cs: [8 |1 |8 |1 [6 [10]15 5 0 17 5 2
CS:1 |8 |2 |16 |1 |6 23 5 8 25 5 10
C1S2 8 |1 |8 |2 |12 21 5 6 23 5 8
CsS1 |8 |3 |24 |1 |6 31 5 16 |33 5 18
CiSs |8 |1 |8 |3 |18 27 5 2 |29 5 14
CsS1 |8 |4 |32 |1 |6 39 5 24 |41 5 26
CiS: |8 |1 |8 |4 |24 33 5 18 |35 5 20
4| CiS 161 [16 [1 [8 [15]25 10 0 27 10 2
C2S1 162 |32 |1 |8 41 10 16 |43 10 18
C1S2 161 |16 [2 |16 33 10 8 3 10 10
CsS1 163 |48 |1 |8 57 10 32 |5 10 34
C1Ss 6|1 |16 [3 |24 41 10 16 |43 10 18
CaS1 6|4 |64 |1 |8 7310 48 |75 10 50
C1S4 16 |1 |16 |4 |32 49 10 24 |51 10 26
5[CSt [32]1 [32 [1 [10]21]4 22 0 45 22 2
CS: |32 |2 |64 |1 |10 75 22 32 7 22 34
C1S2 32 |1 |32 |2 |20 53 22 10 55 22 12
CsS1 |32 |3 |9 |1 |10 107 22 64 109 22 66
CiSs |32 |1 [32 |3 |30 63 22 20 65 22 22
CsS1 |32 |4 |128 |1 |10 139 22 96 141 22 98
CiS: |32 |1 |32 |4 |40 73 22 30 B2 32
6 |CiSt |64 |1 |64 [1 [12]28][77 49 0 79 49 2
CS1 |64 |2 |128 |1 |12 141 49 64 143 49 66
C1S2 64 |1 |64 |2 |24 89 49 12 |91 49 14
CsS1 |64 |3 192 |1 |12 205 49 128 | 207 49 130
CiSs |64 |1 |64 |3 |36 101 49 24 | 103 49 26
CsS1 |64 |4 | 256 |1 |12 269 49 192|271 49 194
CiSs |64 |1 |64 |4 |48 113 49 36 | 115 49 38

5. Summary and Recommendations

Additional centre points improved the A and V for all the factors
considered. The unreplicated CCD, C;S;, offers the best values for the A and V
for k = 3 factors. Replicating the cube is beneficial only up to C5S;, the
replications improved the performances of the designs’ alphabetic criteria,
beyond which alphabetic criteria begin to deteriorate. For k = 5 factors, the
higher the replication of the star, the smaller the V and the better the design; this
characteristic is unique to k = 5 factors. Except for k = 3, the best value for A
was obtained from the star-replicated CCD, C,S,, with or without an additional
centre point.

In general, the higher the replication of the star portion of the CCD
provided uniform the distribution of both the unscaled and scaled prediction
variances throughout the entire design space. This is true using both the
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variance dispersion graphs and the fraction of design space graphs, and for all
the factors considered in the study.
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